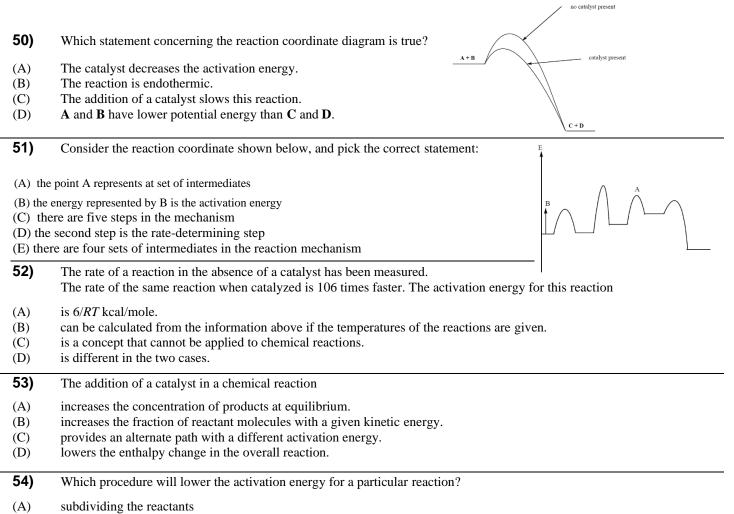
Dougherty Valley HS Chemistry - AP **Kinetics – Kinetics MCQ Practice**

Worksheet #9 Name: Period: Seat#: Directions: Show all work in a way that would earn you credit on the AP Test! Use binder paper to show work. 1) Consider the rxn, $8 \text{ A} + 5 \text{ B} \rightarrow 8 \text{ C} + 6 \text{ D}$. If [C] is increasing at the rate of 4 M/s, at what rate is [B] decreasing? (A) 0.40 M/s4.0 M/s(D) 6.4 M/s**(B)** 2.5 M/s(C) (E) -2.5 M/s 2) Consider the rxn, 5 A + 3 B \rightarrow 9 C + 7 D. If A is being used up at the rate of 15 M/s, how quickly is D being made? (A) 7 M/s (B) 14 M/s (C) 21 M/s (D) 10.7 M/s 1.4 M/s (E) 3) If, at a particular moment, ammonia is formed at a rate of 0.50 M/s from the reaction $N_2(g) + 3H_2(g) \rightarrow 2$ NH₃(g), what is the rate of disappearance of N₂ and that of H₂ from the reaction? N₂: 0.25 M/s; H₂, 0.75 M/s (B) N₂: 0.25 M/s; H₂, 0.25 M/s (A) (C) N2: 0.25 M/s; H2, 0.33 M/s (D) N2: 0.50 M/s; H2, 0.50 M/s N₂: 0.75 M/s; H₂, 0.50 M/s (E) 4) In the reaction, $CO + 3 H_2 \rightarrow CH_4 + H_2O$, which rate expression below is incorrect? $-\Delta[CO]/\Delta t = -\Delta[H_2]/3\Delta t$ (B) $\Delta[CH_4]/\Delta t = \Delta[H_2O]/\Delta t$ (A) $-\Delta[CO]/\Delta t = \Delta[H_2O]/\Delta t$ (D) $-3\Delta[H_2]/\Delta t = \Delta[H_2O]/\Delta t$ (C) $-\Delta[CO]/\Delta t = \Delta[CH_4]/\Delta t$ (E) 5) The rate law for a chemical reaction is determined by (A) theoretical calculations. measuring reaction rate as a function of concentration of reacting species. (B) determining the equilibrium constant for the reaction. (C) (D) measuring reaction rates as a function of temperature. 6) The rate law for a chemical reaction: (A) can be determined from the stoichiometry of the overall reaction (B) can be determined from the fastest step of the mechanism (C) can only be determined by using computer simulation can be determined by measuring rate as a function of reactant concentration (D) can be determined by measuring rate a function of temperature (E) 7) The value of the rate constant of a reaction can generally be expected to (A) be independent of temperature. **(B)** increase with increasing temperature. (C) decrease with increasing temperature. (D) decrease with increasing temperature only if the reaction is exothermic. 8) The following question concerns the rxn, a A + b B \rightarrow c C + d D for which the reaction rate may be written, rate = $k[A]^{n}[B]^{m}$. Which of the following statements is true? (A) k depends on how long the reaction has been going (B) k depends on temperature but never pressure (C) k depends on temperature (D) k depends on [reactants] k depends on the concentration of the products (E) 9) Some chemical reactions proceed at a rate that is proportional to the concentration of a single reactant. Such reactions (A) are called zero order reactions. **(B)** are called first order reactions. are called second order reactions. (C)


(D) do not occur. For a reaction to occur, at least two molecules (or ions) must collide; in this case, however, there is only one reactant

	The rate law for		idel leach	on has t	ne form							
(A)	rate = k	(B)	rate = k	[A] ²	(C)	rate =	<i>k</i> [A]	(D)	rate =	k [A][B]		
11)	The rate expre	ssion for a	a second or	der read	ction is							
(A)	rate = k [A]	(B)	rate = k	[A] ² [B]	(C)	rate =	= k [A] [B]		(D)	rate =	<i>k</i> [A] ² [B] ²
12)	For the reaction of the order of	· · ·	1/ · 1) + 2 H ⁻	$^{+}(aq) \rightarrow$	I ₃ -(aq) +	2 H ₂ O,	the rate law	is rate =	= k[H ₂ O ₂]	[I ⁻]. The	e correct desc
(A)	First order wit	h respect t	to [H ₂ O ₂];	first ord	ler with 1	respect to	[I⁻]; firs	st order with	n respect	to [H ⁺]; a	and seco	ond order ove
(B)	First order wit	-				-			-			
(\mathbf{C})	First order wit	-				-			-			
(D)	First order wit	-				-			-			ond order ov
13)	$2A + 3D \rightarrow pr$											
(A)	k[A][D]	(B)	k[A] ² [D	-	(C)	k[A][(D)	k[A] ² []	-	(E)	$k[A]^2[D]^2$
14)	The rate law for doubled, the rate				+ D , is fi	rst order	in [A] a	nd second o	order in [B]. If [A]	is halv	ed and [B] is
(A)	remain the san	ne.			(B)		be incre	ased by a fa	actor of 2	2.		
(C)	be increased b	y a factor	of 4.		(D)		be incre	ased by a fa	actor of 8	3		
15)	The gas–phase of both A_2 and					•			d \mathbf{B}_2 mo	lecules. I	f the co	ncentrations
(A)	1/2 (B)	2	(C)	3	(D)	4	(E)	$\sqrt{2}$				
16)	If a reaction pr both doubled,						, occurs	at a rate <i>x</i> ,	and if th	e concent	rations	of A and B a
(A)	<i>x</i> (B)	2x	(C)	4 <i>x</i>	(D)	8 <i>x</i>	(E)	16 <i>x</i>				
(A) (C)	For the reaction chlorine double eight. The react first order in N second order in	les the rate ction is IO, first or	e of reactio rder in Cl ₂ .	n. Dout				f both react	ants incro ler in NO		rate by order in	a factor of n Cl ₂ .
18)	The reaction, 5	5 A + 3 B	$+ 2 \text{ C} \rightarrow \text{p}$	roducts			t is 1 st o	rder in A, 1	st order i	n B, and		
	Which of the f	•	•		trations		NO EFI	-				
(A)	double [A], do					(B)		halve [A]				
(C) (E)	double [A], ha halve [A], dou					(D)		double [A	AJ, doubl	e [B], hal	ve [C]	
19)	For the reaction	on $\mathbf{A} + 2\mathbf{B}$	\rightarrow AB ₂ , de	etermine	e the rate	law give	n this d	ata:				
	[A]	[B]		Rate								
Exp.												
1	0.23 M	0.17		0.33								
1 2	0.46 M	0.17	М	0.67	M/h							
-			М	0.67								
1 2 3	0.46 M	0.17	М	0.67 1.00	M/h M/h	(C)	rate =	$= k [A]^2 [B]$		(D)	rate =	$k [A]^2 [B]^2$
1 2 3 (A) ra	0.46 M 0.23 M	0.17 0.51	M M (B) rate	0.67 1.00 $e = k [A$	M/h M/h][B] ²							
1 2 3 (A) ra 20)	0.46 M 0.23 M $\text{te} = k \text{ [A][B]}$ $Consider \text{ the r}$ $\underline{\text{ment}} \qquad \underline{\text{Init. }}$	0.17 0.51	M M (B) rate	0.67 1.00 $e = k [A$ nd NaO <u>Init. [N</u>	M/h M/h][B] ²		and Na					
1 2 3 (A) ra 20) <u>Experi</u> 1	0.46 M 0.23 M $\text{te} = k \text{ [A][B]}$ $\hline \text{Consider the r}$ $\underline{\text{ment}} \qquad \underline{\text{Init. [}}$ 0.36	0.17 0.51 xn betwee	M M (B) rate	0.67 1.00 $e = k [A]$ nd NaO $Init. [P]$ 0.25	M/h M/h][B] ² H to give		and Na <u>Rate</u> 3.7	Cl. Calcula				
1 2 3 (A) ra 20) <u>Experi</u> 1 2	0.46 M 0.23 M $\text{te} = k \text{ [A][B]}$ $Consider \text{ the r}$ $\underline{\text{ment}} \qquad \underline{\text{Init. }}$ 0.36 0.72	0.17 0.51 xn betwee	M M (B) rate	0.67 1.00 k = k [A] k = k nd NaO Init. [N] 0.25 0.25	M/h M/h][B] ² H to give		and Na <u>Rate</u> 3.7 7.4	Cl. Calcula (<u>M/s)</u>				
1 2 3 (A) ra 20) <u>Experi</u> 1 2 3	$0.46 \text{ M} \\ 0.23 \text{ M} \\ \text{te} = k \text{ [A][B]} \\ \hline \text{Consider the r} \\ \hline \text{ment} \\ 0.36 \\ 0.72 \\ 1.44 \\ \hline \end{array}$	0.17 0.51 xn betwee [CH ₃ Cl]	M (B) rate	$0.67 \\ 1.00 \\ e = k [A] \\ nd NaO \\ \\ \underline{Init. [I]} \\ 0.25 \\ 0.25 \\ 0.50 \\ \end{bmatrix}$	M/h M/h][B] ² ¹ H to give <u>NaOH]</u>	e CH₃OH	and Na <u>Rate</u> 3.7 7.4 29.6	Cl. Calcula (M/s)		te law for	this rxr	n given the da
1 2 3 (A) ra 20) <u>Experi</u> 1 2	0.46 M 0.23 M $\text{te} = k \text{ [A][B]}$ $Consider \text{ the r}$ $\underline{\text{ment}} \qquad \underline{\text{Init. }}$ 0.36 0.72	0.17 0.51 xn betwee <u>CH₃Cl]</u> Cl] ² [NaOH	M (B) rate en CH ₃ Cl a	0.67 1.00 k = k [A] k = k nd NaO Init. [N] 0.25 0.25	M/h M/h][B] ² H to give <u>NaOH]</u> Rate =		and Na <u>Rate</u> 3.7 7.4 29.6	Cl. Calcula (<u>M/s)</u> H] ²			this rxr	

21)													
	Exp.		[NO]		[H ₂]	Rate							
	1	6.0		1.0		18							
	2	6.0		2.0		36							
	3	1.0		6.0		3							
	4	2.0		6.0		12							
		H ₂][NO] H ₂]²[NO]²					$te = k[H_2]$ $te = k[H_2]$						
22)		ulate the va	lue of the	e rate con	stant in c								
(A)	0.12		(B)	19		(C)	27		(D)	8.4			
23)		the reaction		→ C these	data wei	e obtaine	ed. What	is the rat	e law?				
Exp.	[A]		[B]	-	<u>Rate</u>								
1	0.10		0.10 M		0.030								
2	0.10		0.20 M		0.1201								
3	0.20	Μ	0.20 M	l	0.1201	M/h							
(A)	rate	= k[A][B]		(B)	rate =	$k[A]^2[B]$		(C)	rate = k	$x[A]^2$		(D)	rate = $k[B]^2$
24)	Initia	al rate data	for the re	action, 21	$V_2O_{5(g)} \rightarrow$	→ 4NO _{2(g)}	$+ O_{2(g)} are$	e as follo	ws. What	is the ra	te law:		
	Exp.		$[N_2O_5]$		[O ₂]	Rate							
	1	0.15 M		0.30 M		46 M/s							
	2	0.20 M		0.60 M		61 M/s							
	3	0.20 M		0.30 M		<1 3 F/							
A) r	ate = $k[$]		(B) rat	te = $k[N_2C]$	$O_5]^1[O_2]^2$	61 M/s	(C) rat	$\mathbf{e} = k[[\mathbf{N}_2]$	$[O_5]^2(D)$ r	ate = k []	N ₂ O ₅] ² [C	D ₂]	
	ate = k [] The			$te = k[\mathbf{N}_2\mathbf{C}]$					Calculate) ₂]	
	ate = $k[$]	N ₂ O ₅] data below		te = $k[N_2C]$ asured for		ction, 2A		$C \rightarrow D.$ rate (M/	Calculate			D ₂]	
	ate = k [] The Exp.	N2O5] data below [A]		$te = k[N_2C]$ asured for [B]		ction, 2A [C]		$C \rightarrow D.$	Calculate)2]	
	ate = $k[]$ The Exp. 1	N ₂ O ₅] data below [A] 0.25		$te = k[N_2 C]$ asured for [B] 0.20		etion, 2A [C] 1.0		$C \rightarrow D.$ rate (M/ 5.1	Calculate			D ₂]	
	ate = $k[1]$ The Exp. 1 2	N ₂ O ₅] data below [A] 0.25 0.25		$te = k[N_2O]$ assured for $[B]$ 0.20 0.40		ction, 2A [C] 1.0 2.0		$C \rightarrow D.$ rate (M/ 5.1 20.4	Calculate			D ₂]	
25)	ate = $k[1]$ The Exp. $\frac{1}{2}$ 3 4	N ₂ O ₅] data below [A] 0.25 0.25 0.25 0.25 0.50	were me	te = $k[N_2O]$ asured for [B] 0.20 0.40 0.40	the reac	etion, 2A [C] 1.0 2.0 1.0 1.0	+ 2B + 2	$C \rightarrow D.$ rate (M/ 5.1 20.4 20.4 10.2	Calculate (min)	the rate	law		
25) (A)	ate = $k[]$ The Exp. 1 2 3 4 rate	N ₂ O ₅] data below [A] 0.25 0.25 0.25	were me.	te = $k[N_2O]$ asured for [B] 0.20 0.40 0.40		ction, 2A [C] 1.0 2.0 1.0 1.0 1.0 rate = 1		$C \rightarrow D.$ rate (M/ 5.1 20.4 20.4 10.2 $C]^2$	Calculate	the rate			
(A) (D)	ate = $k[1]$ The Exp. 1 2 3 4 rate rate	$N_{2}O_{5}]$ data below [A] 0.25 0.25 0.25 0.50 $= k[A]^{2}[B]^{2}$	were me	$te = k[N_2 C]$ asured for [B] 0.20 0.40 0.40 0.20	(B) (E)	ction, 2A [C] 1.0 2.0 1.0 1.0 rate = 1 rate = 1	+ 2B + 2 k[A][B][0 k[A][B][0	$C \rightarrow D.$ rate (M/ 5.1 20.4 20.4 10.2 $C]^2$ C]	Calculate (min) (C)	the rate	law k[A][B] ²	² [C]	of the
(A) (D)	ate = $k[1]$ The Exp. 1 2 3 4 rate rate The	$N_{2}O_{5}]$ data below [A] 0.25 0.25 0.25 0.50 = k[A]^{2}[B]^{2} = k[A][B]^{2}	were me	$te = k[N_2C]$ asured for $[B]$ 0.20 0.40 0.40 0.20 ethylether	(B) (E) at 504 °	ction, 2A [C] 1.0 2.0 1.0 1.0 1.0 rate = 1 rate = 1 CC is first	+ 2B + 2 k[A][B][0 k[A][B][0	$C \rightarrow D.$ rate (M/ 5.1 20.4 20.4 10.2 $C]^2$ C]	Calculate (min) (C)	the rate	law k[A][B] ²	² [C]	of the
(A) (D) 26)	ate = $k[1]$ The Exp. 1 2 3 4 rate rate The	N_2O_5] data below [A] 0.25 0.25 0.25 0.50 = k[A] ² [B] ² = k[A][B] ² decompositional sample	were me	$te = k[N_2C]$ asured for $[B]$ 0.20 0.40 0.40 0.20 ethylether	(B) (E) at 504 °	ction, 2A [C] 1.0 2.0 1.0 1.0 1.0 rate = 1 rate = 1 CC is first	+ 2B + 2 k[A][B][0 k[A][B][0	$C \rightarrow D.$ rate (M/ 5.1 20.4 20.4 10.2 $C]^2$ C]	Calculate (min) (C)	the rate	law k[A][B] ²	² [C]	of the
(A) (D) 26) (A)	ate = $k[1]$ The Exp. 1 2 3 4 rate rate rate origi 1/16	N_2O_5] data below [A] 0.25 0.25 0.25 0.50 = k[A] ² [B] ² = k[A][B] ² decompositional sample	were me ² [C] ² tion of dia will remain (B)	$te = k[N_2C]$ asured for $[B]$ 0.20 0.40 0.40 0.20 ethylether ain after 4 1/8	(B) (E) at 504 ° 710 seco	etion, 2A [C] 1.0 2.0 1.0 1.0 1.0 rate = 1 rate = 1 PC is first pnds? (C)	+ 2B + 2 k[A][B][0 k[A][B][0 order wi 1/3	$C \rightarrow D.$ rate (M/ 5.1 20.4 20.4 10.2 C] ² C] th a half-	Calculate (min) (C) life of 15' (D)	the rate rate = rate = 70 secon 1/6	law k[A][B] ² ds. Wha	² [C] t fraction	of the
(A) ra (A) (D) (A) (A) (A) (A)	ate = k[1] The Exp. 1 2 3 4 rate rate rate The origi 1/16 A fin	N_2O_5] data below [A] 0.25 0.25 0.25 0.50 = k[A] ² [B] ² = k[A][B] ² decompositional sample	were me ² [C] ² tion of div will remain (B) action has	$te = k[N_2C]$ asured for $[B]$ 0.20 0.40 0.40 0.20 ethylether ain after 4 1/8	(B) (E) at 504 ° 710 seco	etion, 2A [C] 1.0 2.0 1.0 1.0 1.0 rate = 1 rate = 1 PC is first pnds? (C)	+ 2B + 2 k[A][B][0 k[A][B][0 order wi 1/3 The half I	$C \rightarrow D.$ rate (M/ 5.1 20.4 20.4 10.2 C] ² C] th a half-	Calculate (min) (C) life of 15' (D)	the rate = rate = 70 secon 1/6 is:	law k[A][B] ² ds. Wha	² [C] t fraction	of the
(A) (D) 26) (A) (A) (A)	ate = $k[1]$ The Exp. 1 2 3 4 rate rate rate origi 1/16 A fin $t_{1/2}$ =	$N_2O_5]$ data below [A] 0.25 0.25 0.25 0.50 $= k[A]^2[B]^2$ decompositional sample	were me ² [C] ² tion of div will remain (B) action has	$te = k[N_2C]$ asured for $[B]$ 0.20 0.40 0.40 0.20 ethylether ain after 4 1/8 s the rate 1	(B) (E) at 504 ° 710 seco	ttion, 2A [C] 1.0 2.0 1.0 1.0 rate = 1 rate = 1 PC is first pnds? (C) = k[A]. T	+ 2B + 2 k[A][B][0 k[A][B][0 order wi 1/3 The half I / k	$C \rightarrow D.$ rate (M) 5.1 20.4 20.4 10.2 C] ² C] th a half-	Calculate (min) (C) life of 15' (D) s reaction	the rate = rate = 70 secon 1/6 is:	law k[A][B] ² ds. Wha	² [C] t fraction	of the
(A) (D) 26) (A) (A) (D)	ate = $k[]$ The Exp. 1 2 3 4 rate rate rate rate origi 1/16 A fin $t_{1/2} =$ For t	N_2O_5] data below [A] 0.25 0.25 0.25 0.50 = k[A] ² [B] ² = k[A][B] ² decomposit inal sample rst order rea = (log ₁₀ 2)/k	were me ² [C] ² tion of dia will remain (B) totion has TOBr(g) -	te = $k[N_2C]$ asured for [B] 0.20 0.40 0.40 0.20 ethylether ain after 4 1/8 the rate 1 (B) (E) $\rightarrow 2 \operatorname{NO}(g)$	(B) (E) at 504 ° 710 seco aw, rate $t_{1/2} =$ $t_{1/2} =$) + Br ₂ (§	ttion, 2A [C] 1.0 2.0 1.0 1.0 rate = 1 rate = 1 C is first onds? (C) = k[A]. T -(ln 2) (ln 2) g), the rat	+ 2B + 2 k[A][B][4 k[A][B][6 order wi 1/3 The half 1 / k x k e law is r	$C \rightarrow D.$ rate (M) 5.1 20.4 20.4 10.2 $C]^{2}$ $C]$ th a half- ife of this (C) $rate = k[N]$	Calculate (min) (C) life of 15' (D) s reaction $t_{1/2} = (1$ NOBr] ² and	the rate rate = 70 secon 1/6 is: n 2)/k d the rat	law k[A][B] ² ds. Wha (E) e consta	² [C] t fraction 1/32 nt is	of the
(A) (D) 26) (A) (A) (D) 27) (A) (D) 28)	ate = $k[1]$ The Exp. 1 2 3 4 rate rate rate origi 1/16 A fin $t_{1/2} =$ $t_{1/2} =$ For t 0.80	N_2O_5] data below [A] 0.25 0.25 0.25 0.50 = k[A] ² [B] ² = k[A][B] ² decompositional sample rest order read = (log ₁₀ 2)/k = 1 / k[A] ₀	were me ² [C] ² tion of dia will remain (B) totion has TOBr(g) -	te = $k[N_2C]$ asured for [B] 0.20 0.40 0.40 0.20 ethylether ain after 4 1/8 the rate 1 (B) (E) $\rightarrow 2 \operatorname{NO}(g)$	(B) (E) at 504 ° 710 seco aw, rate $t_{1/2} =$ $t_{1/2} =$) + Br ₂ (§	ttion, 2A [C] 1.0 2.0 1.0 1.0 rate = 1 rate = 1 C is first onds? (C) = k[A]. T -(ln 2) (ln 2) g), the rat OBr after	+ 2B + 2 k[A][B][4 k[A][B][6 order wi 1/3 The half 1 / k x k e law is r	$C \rightarrow D.$ rate (M) 5.1 20.4 20.4 10.2 $C]^{2}$ $C]$ th a half- ife of this (C) $rate = k[N]$	Calculate (min) (C) life of 15' (D) s reaction $t_{1/2} = (1$ NOBr] ² and	the rate rate = 70 secon 1/6 is: n 2)/k d the rat ration is	law k[A][B] ² ds. Wha (E) e consta	² [C] t fraction 1/32 nt is	of the
(A) (D) 26) (A) 27)	ate = $k[1]$ The Exp. 1 2 3 4 rate rate rate rate 1/16 A fin $t_{1/2} =$ For t 0.80 7.1 >	N_2O_5] data below [A] 0.25 0.25 0.25 0.50 = k[A] ² [B] ² = k[A][B] ² decomposition inal sample rst order read = (log ₁₀ 2)/k = 1 / k[A] ₀ the rxn, 2 N 1/Ms. What	were me ² [C] ² tion of dia will remain (B) totion has TOBr(g) -	te = $k[N_2C]$ asured for [B] 0.20 0.40 0.40 0.20 ethylether ain after 4 1/8 the rate 1 (B) (E) $\rightarrow 2 \operatorname{NO}(g)$	(B) (E) at 504 ° 710 seco aw, rate $t_{1/2} =$ $t_{1/2} =$) + Br ₂ (§ on of NG	tion, 2A [C] 1.0 2.0 1.0 1.0 rate = 1 rate = 1 C is first ords? (C) = k[A]. T -(ln 2) (ln 2) g), the rat OBr after 0^{11} M	+ 2B + 2 k[A][B][4 k[A][B][6 order wi 1/3 The half 1 / k x k e law is r	$C \rightarrow D.$ rate (M) 5.1 20.4 20.4 10.2 $C]^{2}$ $C]$ th a half- ife of this (C) $rate = k[N]$ he starting	Calculate (min) (C) life of 15' (D) s reaction $t_{1/2} = (1$ NOBr] ² and g concentration	the rate rate = 70 secon 1/6 is: n 2)/k d the rat ration is	law k[A][B] ² ds. Wha (E) e consta	² [C] t fraction 1/32 nt is	of the
(A) (D) 26) (A) (D) 27) (A) (D) 28) (A) (D)	ate = $k[1]$ The Exp. 1 2 3 4 rate The origit 1/16 A fin t _{1/2} = For t 0.800 7.1 > 1.2 > The rate	N_2O_5] data below [A] 0.25 0.25 0.25 0.50 = k[A] ² [B] ² = k[A][B] ² decompositional sample rst order reations = (log ₁₀ 2)/k = 1 / k[A] ₀ the rxn, 2 N 1/Ms. What $x = 10^{-11}$ M reaction of	were mean ² [C] ² ² [C] ² ² (O) of dia will remain (B) ² (B) ³ (B) ³ (C) of dia will remain (B) ⁴ (C) of dia will remain (B) ⁴ (C) of dia will remain (B) ⁴ (C) of dia will remain (B) ⁴ (C) of dia will remain (C) of dia (C) of dia	te = $k[N_2C]$ asured for [B] 0.20 0.40 0.40 0.20 ethylether ain after 4 1/8 s the rate 1 (B) (E) $\rightarrow 2 \operatorname{NO}(g)$ oncentrati (B) (E) pane to pr	(B) (E) $at 504 \degree$ 710 seco aw, rate $t_{1/2} =$ $t_{1/2} =$) + Br ₂ (§ on of NO 8.4 x 1 0.034]	tion, 2A [C] 1.0 2.0 1.0 1.0 rate = 1 rate = 1 C is first ords? (C) = k[A]. T -(ln 2) (ln 2) g), the rat OBr after 0^{11} M M	+ 2B + 2 k[A][B][0 k[A][B][0 order wi 1/3 The half l / k x k e law is r 22 s if th er, with a	$C \rightarrow D.$ rate (M) 5.1 20.4 20.4 10.2 C] ² C] th a half- ife of this (C) rate = k[N he starting (C)	Calculate (min) (C) (C) life of 15' (D) s reaction $t_{1/2} = (1$ NOBr] ² and g concentre 0.086 N	the rate arrate array of the rate array of th	law k[A][B] ² ds. Wha (E) e consta 0.086 M	² [C] t fraction 1/32 nt is ?	of the
 (A) (D) 26) (A) (A) (D) 28) (A) 	ate = $k[1]$ The Exp. 1 2 3 4 rate rate rate rate rate rate 1/16 A fin $t_{1/2} =$ For t 0.80 7.1 > 1.2 > The M cy	$N_{2}O_{5}]$ data below [A] 0.25 0.25 0.25 0.50 = k[A]^{2}[B]^{2} = k[A][B]^{2} decompositional sample rst order rea = (log_{10} 2)/k = 1 / k[A]_{0} the rxn, 2 N 1/Ms. What < 10 ⁻¹¹ M < 10 ⁻¹² M	were mean ² [C] ² ² [C] ² ² (O) of dia will remain (B) ² (B) ³ (B) ³ (C) of dia will remain (B) ⁴ (C) of dia will remain (B) ⁴ (C) of dia will remain (B) ⁴ (C) of dia will remain (B) ⁴ (C) of dia will remain (C) of dia (C) of dia	te = $k[N_2C]$ asured for [B] 0.20 0.40 0.40 0.20 ethylether ain after 4 1/8 s the rate 1 (B) (E) $\rightarrow 2 \operatorname{NO}(g)$ oncentrati (B) (E) pane to pr	(B) (E) at 504 ° 710 seco aw, rate $t_{1/2} =$ $t_{1/2} =$) + Br ₂ (§ on of NO 8.4 x 1 0.034] opene is e left aft	tion, 2A [C] 1.0 2.0 1.0 1.0 rate = 1 rate = 1 C is first ords? (C) = k[A]. T -(ln 2) (ln 2) g), the rat OBr after 0^{11} M M	+ 2B + 2 k[A][B][0 k[A][B][0 order wi 1/3 The half l / k x k e law is r 22 s if th er, with a	$C \rightarrow D.$ rate (M) 5.1 20.4 20.4 10.2 C] ² C] th a half- ife of this (C) rate = k[N ne starting (C) rate con	Calculate (min) (C) (C) life of 15' (D) s reaction $t_{1/2} = (1$ NOBr] ² and g concentre 0.086 N	the rate arrate array of the rate array of th	law k[A][B] ⁴ ds. Wha (E) e consta 0.086 M hr ⁻¹ at 2:	² [C] t fraction 1/32 nt is ?	

30)			t-order decomposi t take until I only			leus, ²⁴¹ U	is 15 seconds. If	I make 50	g of this	
(A)	30 seconds	(B)	45 seconds	(C)	60 seconds	(D)	75 seconds	(E)	90 seconds	
31)			etion, $3 \text{ A} \rightarrow \text{C}$ is a contration of A is			ere k is giv	ven as 1/Mh Wha	t is the ha	If life for the	
(A)	0.0109 h	(B)	0.0629 h	(C)	15.9 h	(D)	91.7 h	(E)	4.36 x 10 ⁻² h	
32)			lows second order value of k in 1/M		At 300 °C, it tak	es 100 s f	for the [NO ₂] to d	rop from (0.0100 to	
(A)	0.096 (B)	0.65	(C) 0.81	(D)	1.2 (E)	0.54				
33)	$CH_3NC \rightarrow CH_3NC$ much is left af		first order reaction ?	n. At 230.	$3 ^{\circ}\mathrm{C}, \mathrm{k} = 6.30 \mathrm{x}$	10 ⁻⁴ s ⁻¹ . If	I start with 0.001	M [CH ₃ N	NC], how	
(A)	0.000533	(B)	0.00234	(C)	0.00188	(D)	0.00427			
34)		1	icular second-ord the concentration				l concentration of	the react	ant is 0.25 M,	
(A)	7.9 s	(B)	1.4 s	(C)	3.7 s	(D)	1.7 s			
35)			a first order reacti A, what will be th				at 25 °C. If the in	nitial conc	entration	
(A)	0.40 M	(B)	0.20 M	(C)	0.10 M	(D)	0.050 M			
36)			ydrogen peroxide rogen peroxide to			h k = 1.06	5 x 10 ⁻³ min ⁻¹ . Ho	w long wi	ll it take for	
(A)	7.55 min	(B)	481 min	(C)	4550 min	(D)	31,400 min			
37)			OCl ₂ is first order to drop from 0.36			ction is 4.1	h, how long wo	uld it take	for the	
(A)	0.52 h	(B)	1.4 h	(C)	12 h	(D)	33 h			
38)	A change in te change affect		e from 10 °C to 20 ng molecules?) °C is fou	and to double the	rate of a g	given chemical re	action. Ho	ow did this	
(A)	It doubled the			(B)	It doubled thei	r average	energy.			
(C) (D)			f collisions per se nside the reaction							
(E)		-	n of molecules po		at least the minim	um energ	y required for the	reaction.		
39)	How is the act	ivation en	ergy E _a determine	ed from m	neasurements of th	ne rate con	nstants as a functi	on of tem	perature?	
(A) (B) (C) (D) (E)	Plot ln K as a function of 1/T, where T is measured in degrees Celsius Plot K as a function of 1/T, where T is measured in degrees Kelvin Plot K as a function of T, where T is measured in degrees Kelvin Plot ln K as a function of 1/T, where T is measured in degrees Kelvin Plot ln K as a function of T, where T is measured in degrees Celsius									
40)			mposition of dinit tudies is correct?	rogen pei	ntoxide are studie	d at 50 °C	C and 75 °C. Whic	ch of the f	ollowing	
(A) (B) (C) (D)	The rate at 75 The rate at 75 the ones at low	°C will be °C will be ver speeds	e lower than at 50	0 °C beca °C becau	use the # of mole se the molecules	cules with with high	n enough energy t er speeds do not i	nteract as		
(E)			e greater than that							

41)	activation, E.										
(A) (B) (C) (D)	increases with depends only of increases with decreases with	on the empi	irical constar	nt, A. e.							
	Dinitrogen tetrae 10 ³ s ⁻¹ at -5°C	oxide, N ₂ O	4, decompose	es to nitroge						5 ×	
(A)	0.73 kJ/mol	(B)	58 kJ/mol	(C)	140 kJ	/mol	(D)	580 kJ/m	ol		
43)	The decomposed below. In this			cide in the p	resence of i	iodide ior	n is believ	ed to occur	via the	mechan	ism
1.	$\mathrm{H}_{2}\mathrm{O}_{2^{(aq)}}+\mathrm{I}^{{(aq)}}$	\rightarrow H ₂ O(<i>l</i>) +	\cdot IO ^{-(aq)}			2.	$H_2O_{2(aq)}$	$) + IO^{-(aq)} \rightarrow$	$H_2O(l)$ +	$- O_{2(g)} +$	$I^{-}(aq)$
(A)	a catalyst.		(B)	a reactan	it in the o	verall read	ction.			
(C)	the activated c	complex.		(D)	a product	t of the o	verall read	ction.			
44)	The following	· ·	n has been p	roposed for	-				bstance	is not ar	n intermediate
C ₆ H ₆ C	$H_2Br + AlBr_3 \rightarrow CH_2CH_3^+ + AlBr_4^-$	$\rightarrow AlBr_3 +$	- HBr + C ₆ H	5CH2CH3					011 ±		
(A)	AlBr ₃	(B)	$CH_3CH_2^+$	(C)	AlBr ₄ -		(D)	C ₆ H ₆ CH ₂	CH3 ⁺		
45)	Consider the r the rate law fo			$\rightarrow 2NO_2F_{(g)}$. A propose	ed mecha	nism for t	his reaction	is show	n below	v. What is
	the fate fatt fo										
1.	$NO_2 + F_2 \rightarrow N$	$JO_2F + F$	(s	slow)		2.	$NO_2 + 1$	$F \rightarrow NO_2F$		(fast)	
	$NO_2 + F_2 \rightarrow N$		(s	low)		2.	$NO_2 + 1$	$F \rightarrow NO_2F$		(fast)	
			(s (B) rate =		2		$NO_2 + 1$ te = $k[NO_2 + 1]$. ,	e = k[NO][F]
	$NO_2 + F_2 \rightarrow N$	\overline{F}_{2}	(B) rate = $O_2(g) \rightarrow 2 N$	k[NO][F]	n observed	(C) ra	te = k [NO)][F] ₂		(D) rate	e = <i>k</i> [NO][F]
(A) ra	$NO_2 + F_2 \rightarrow N$ $te = k \frac{[NO_2F]^2}{[NO_2F]^2}$ The reaction, 2	\overline{F}_{2} 2 NO(g) + 0 could be pro-	(B) rate = $O_2(g) \rightarrow 2$ N posed for the	k[NO][F]	n observed	(C) ra	te = <i>k</i> [NO , rate = k[])][F] ₂	Three po	(D) rate	
(A) ra	$NO_{2} + F_{2} \rightarrow N$ the = k $\frac{[NO_{2}F]^{2}}{[NO]_{2}^{2}[1]}$ The reaction, 2 mechanisms c	\overline{F}_{2} $2 \text{ NO(g)} + 0$ Fould be proported by the proported by the proported by the proported by the properties of	(B) rate = $O_2(g) \rightarrow 2 N$ posed for this w. g)	k[NO][F]	n observed	(C) ra	te = <i>k</i> [NO , rate = k[]	$\frac{1}{2}[\mathbf{F}]_{2}$ NO] ² [O ₂]. 7	Three po First ste NO(g) -	(D) rate ossible ep slow. → N ₂ O ₂ ((g)
(A) ra 46) MECH 1. 2.	$NO_{2} + F_{2} \rightarrow N$ ite = $k \frac{[NO_{2}F]^{2}}{[NO_{2}F]^{2}}$ The reaction, 2 mechanisms c HANISM I. Seco NO(g) + NO(g	\overline{F}_{2} $2 \text{ NO(g)} + 0$ Fould be proported by the proposed of the propos	(B) rate = $O_2(g) \rightarrow 2 N$ posed for the w. g) $_2(g)$	k[NO][F] $O_2(g)$, has a is reaction, a	n observed as shown:	(C) ra	te = k[NO] , rate = k[1] MECH 1. 2.	$\frac{1}{2} [\mathbf{F}]_{2}$ $\frac{1}{2} [\mathbf{F}]_{2}$ $\frac{1}{2} [\mathbf{O}_{2}] \cdot \mathbf{I}_{2}$ $\frac{1}{2} \mathbf{N} \mathbf{O}_{2}^{2} [\mathbf{O}_{2}] \cdot \mathbf{I}_{2}$ $\frac{1}{2} \mathbf{N} \mathbf{O}_{2}^{2} (\mathbf{g}) + \mathbf{I}_{2}$	Fhree po First ste NO(g) – - O ₂ (g) -	(D) rate assible p slow. \rightarrow N ₂ O ₂ (\rightarrow 2 NC	(g)) ₂ (g)
(A) ra 46) MECH 1. 2.	$NO_{2} + F_{2} \rightarrow N$ ite = $k \frac{[NO_{2}F]^{2}}{[NO_{2}^{2}]_{2}^{2}[1]}$ The reaction, 2 mechanisms c HANISM I. Seco NO(g) + NO(g N_{2}O_{2}(g) + O_{2}(g))	\overline{F}_{2} $2 \text{ NO(g)} + 0$ Fould be proported by the proposed of the propos	(B) rate = $O_2(g) \rightarrow 2 N$ posed for the w. g) $_2(g)$	k[NO][F] $O_2(g)$, has a is reaction, a	n observed as shown:	(C) ra rate law, Which of	te = k[NO] , rate = k[1] MECH 1. 2.	$\frac{1}{2} [\mathbf{F}]_{2}$ $\frac{1}{2} [\mathbf{F}]_{2}$ $\frac{1}{2} [\mathbf{O}_{2}] \cdot \mathbf{I}_{2}$ $\frac{1}{2} \mathbf{N} \mathbf{O}_{2}^{2} [\mathbf{O}_{2}] \cdot \mathbf{I}_{2}$ $\frac{1}{2} \mathbf{N} \mathbf{O}_{2}^{2} (\mathbf{g}) + \mathbf{I}_{2}$	Fhree po First ste NO(g) – - O ₂ (g) -	(D) rate assible p slow. \rightarrow N ₂ O ₂ (\rightarrow 2 NC	(g)) ₂ (g)
 (A) ra 46) MECH 1. 2. MECH 	NO ₂ + F ₂ → N tte = k $\frac{[NO_2F]^2}{[NO_2]_2^2[1]}$ The reaction, 2 mechanisms c HANISM I. Seco NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (HANISM III. One	\overline{F}_{2} $2 \text{ NO}(g) + (6)$ $2 \text{ ould be proposed by a step slow of step slow of g) \rightarrow N_2O_2(2^{(2)}) \rightarrow 2 \text{ NO} 2 \text{ step reaction (B)} \overline{Collowing m}$	(B) rate = $O_2(g) \rightarrow 2 N$ posed for this w. g) $O_2(g)$ ion, 2 NO(g) II only mechanism of	k[NO][F] $O_2(g)$, has a is reaction, a $0 + O_2(g) \rightarrow$ (C) the oxidation	an observed as shown: 2 NO ₂ (g) V III only on of bromi	(C) ra rate law, Which of y ide ions b	te = k[NO] , rate = k[1 MECH. 1. 2. these mec (D) y hydroge	$\sum_{i=1}^{n} \left[\frac{\mathbf{F}}{2} \right]_{2}^{2} \left[\mathbf{O}_{2} \right]_{2}^{2} \left[\mathbf{O}_{2} \right]_{2}^{2} \mathbf{O}_{2}^{2} \mathbf{O}_{2}^{2$	Fhree po First ste NO(g) – - $O_2(g)$ · the mos	(D) rate ossible ep slow. → N ₂ O ₂ (→ 2 NC t likely? (E)	(g) 92(g) ? II and III
 (A) ra 46) MECH 1. 2. MECH (A) 	$NO_{2} + F_{2} \rightarrow N$ $te = k \frac{[NO_{2}F]^{2}}{[NO]_{2}^{2}[1]}$ The reaction, 2 mechanisms c HANISM I. Seco NO(g) + NO(g N_{2}O_{2}(g) + O_{2}(g) HANISM III. One I only Consider the f	\overline{F}_{2} $2 \text{ NO(g)} + (6)$ $2 nould be proposed by proposed by a step slow of the step slow of the step slow of the step reaction (B) following material states in the step reaction (B) following materia$	(B) rate = $O_2(g) \rightarrow 2 N$ posed for this w. g) $O_2(g)$ ion, 2 NO(g) II only mechanism of	k[NO][F] $O_2(g)$, has a is reaction, a $0 + O_2(g) \rightarrow$ (C) the oxidation	an observed as shown: 2 NO ₂ (g) V III only on of bromi at with this r	(C) ra rate law, Which of y ide ions b mechanis	te = k[NO] , rate = k[1 MECH 1. 2. these mec (D) y hydroge	$\sum_{i=1}^{n} \left[\frac{\mathbf{F}}{2} \right]_{2}^{2} \left[\mathbf{O}_{2} \right]_{2}^{2} \left[\mathbf{O}_{2} \right]_{2}^{2} \mathbf{O}_{2}^{2} \mathbf{O}_{2}^{2$	Fhree po First ste NO(g) - $- O_2(g) -$ the mos in acid	(D) rate ossible ep slow. → N ₂ O ₂ (→ 2 NC t likely? (E)	(g) 92(g) ? II and III
 (A) ra 46) MECH 1. 2. MECH (A) 47) 	NO ₂ + F ₂ → N the = k $\frac{[NO_2F]^2}{[NO_2F]^2}$ The reaction, 2 mechanisms c HANISM I. Seco NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (HANISM III. One I only Consider the f Which of the r	\overline{F}_{2} 2 NO(g) + 0 Found be proported by the p	(B) rate = $O_2(g) \rightarrow 2 \text{ N}$ posed for the w. (g) $D_2(g)$ ion, 2 NO(g) II only rechanism of the answers	k[NO][F] $O_2(g)$, has a is reaction, a $0 + O_2(g) \rightarrow$ (C) the oxidation is consistent	un observed as shown: 2 NO ₂ (g) V III only on of bromi at with this r t 2.	(C) ra rate law, Which of y ide ions b mechanis	te = k[NO] , rate = k[1 MECH 1. 2. these mec (D) y hydroge	$\frac{1}{2} [\mathbf{F}]_{2}$ $NO]^{2}[O_{2}]. T$ $ANISM II.$ $NO(g) + 1$ $N_{2}O_{2}(g) + 1$ $hanisms is$ $I and III$ en peroxide	Fhree po First ste NO(g) - $- O_2(g) -$ the mos in acid	(D) rate ossible ep slow. → N ₂ O ₂ (→ 2 NC t likely? (E)	(g) 0 ₂ (g) ? II and III 1.
 (A) ra 46) MECH 1. (A) 47) 1. 3. (A) 	NO ₂ + F ₂ → N the = k $\frac{[NO_2F]^2}{[NO_3]_2^2[1]}$ The reaction, 2 mechanisms c HANISM I. Seco NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (HANISM III. One I only Consider the f Which of the r H ⁺ + H ₂ O ₂ → HOBr + H ⁺ + Rate = k[H ₂ O ₂	\overline{F}_{2} 2 NO(g) + 0 could be pro- ond step slow g) → N ₂ O ₂ ('g) → 2 NO e step reacti (B) \overline{C} Collowing m rate laws in H ₂ O-OH ⁺ Br ⁻ → Br ₂ - 2][Br ⁻][H ⁺] ²	(B) rate = $O_2(g) \rightarrow 2 \text{ N}$ posed for this w. (g) $D_2(g)$ ion, 2 NO(g) II only rechanism of the answers + H ₂ O (1)	$k[\text{NO }][\text{F }]$ $(O_2(g), has a a is reaction, a is reaction, a is reaction, a is reaction, a is consistent of the oxidation of the oxi$	an observed as shown: $2 \text{ NO}_2(g) \text{ V}$ III only on of bromi at with this r t 2. t $z = k[H_2O_2]$	(C) ra rate law, Which of y ide ions b mechanis H ₂ O-C [Br ⁻][H ⁺]	te = k [NO , rate = k [1 MECH 1. 2. these mec (D) y hydroge sm? DH ⁺ + Br ⁻		Fhree por First stee NO(g) - $- O_2(g) -$ the most in acid H_2O	(D) rate ossible ep slow. $\rightarrow N_2O_2(\rightarrow 2 \text{ NC})$ t likely? (E) solution	(g) 0 ₂ (g) ? II and III 1.
 (A) ra 46) MECH 1. 2. MECH (A) 47) 1. 3. (A) (D) 	NO ₂ + F ₂ → N the = k $\frac{[NO_2F]^2}{[NO_2F]^2}$ The reaction, 2 mechanisms c HANISM I. Seco NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (HANISM III. One I only Consider the f Which of the r H ⁺ + H ₂ O ₂ → HOBr + H ⁺ +	\overline{F}_{2} 2 NO(g) + 0 could be pro- ond step slow g) → N ₂ O ₂ ('g) → 2 NO e step reacti (B) \overline{C} Collowing m rate laws in H ₂ O-OH ⁺ Br ⁻ → Br ₂ - 2][Br ⁻][H ⁺] ²	(B) rate = $O_2(g) \rightarrow 2 \text{ N}$ posed for this w. (g) $D_2(g)$ ion, 2 NO(g) II only rechanism of the answers + H ₂ O (1)	$k[\text{NO }][\text{F }]$ $(O_2(g), has a a is reaction, a is reaction, a is reaction, a is reaction, a is consistent of the oxidation of the oxi$	un observed as shown: 2 NO ₂ (g) V III only on of bromi at with this r t 2. t	(C) ra rate law, Which of y ide ions b mechanis H ₂ O-C [Br ⁻][H ⁺]	te = k [NO , rate = k [1 MECH 1. 2. these mec (D) y hydroge sm? DH ⁺ + Br ⁻		Fhree por First stee NO(g) - $- O_2(g) -$ the most in acid H_2O	(D) rate ossible ep slow. $\rightarrow N_2O_2(\rightarrow 2 \text{ NC})$ t likely? (E) solution	(g) 0 ₂ (g) ? II and III Slo
 (A) ra 46) MECH 1. (A) 47) 1. 3. (A) 	NO ₂ + F ₂ → N the = k $\frac{[NO_2F]^2}{[NO_3]_2^2[1]}$ The reaction, 2 mechanisms c HANISM I. Seco NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (HANISM III. One I only Consider the f Which of the r H ⁺ + H ₂ O ₂ → HOBr + H ⁺ + Rate = k[H ₂ O ₂	$\overline{\mathbf{F}}_{2}$ $2 \operatorname{NO}(g) + ($ Fould be proported by the proported proport of the proported proport of the pro	(B) rate = $O_2(g) \rightarrow 2 N$ posed for this w. g) $P_2(g)$ ion, 2 NO(g) II only mechanism of the answers + H ₂ O (1) $P_2(g)$	$k[\text{NO }][\text{F }]$ $O_2(g), has a is reaction, a is reaction, a is reaction, a is reaction, a of the oxidation of the oxi$	un observed as shown: 2 NO ₂ (g) V III only on of bromi at with this r t 2. t $t = k[H_2O_2][$ e = k[HOBr]	(C) ra rate law, which of y ide ions b mechanis H ₂ O-C [Br ⁻][H ⁺]	te = k [NO , rate = k [] MECH 1. 2. these mec (D) y hydroge sm? DH ⁺ + Br ⁻	$\begin{array}{c} \begin{array}{c} 1 \\ 2 \end{array} \begin{bmatrix} \mathbf{F} \\ 3 \end{array} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{ANISM II.} \\ \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{O}_{2} \\ \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{O}_{2} \\ \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{O}_{2} \\ \mathbf{O}_{2} \\ \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{O}_{2} \\ \mathbf$	Fhree po First ste NO(g) - $O_2(g) -$ the mos in acid H_2O Rate = k	(D) rate ossible ep slow. → N ₂ O ₂ (→ 2 NC t likely? (E) solution [H ₂ O-O	(g)) ₂ (g) ? II and III h. Slo PH ⁺][Br ⁻]
 (A) ra 46) MECH 1. 2. MECH (A) 47) 1. 3. (A) (D) 48) 	NO ₂ + F ₂ → N the = k $\frac{[NO_2F]^2}{[NO_3]_2^2[1]}$ The reaction, 2 mechanisms c HANISM I. Secon NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (HANISM III. One I only Consider the f Which of the f H ⁺ + H ₂ O ₂ → HOBr + H ⁺ + Rate = k[H ₂ O ₂ Rate = k[H ₂ O ₂ In a chemical	$\overline{\mathbf{F}}_{2}$ $2 \operatorname{NO}(g) + 0$ Fould be proported by pro	(B) rate = $O_2(g) \rightarrow 2 N$ posed for this w. g) $P_2(g)$ ion, 2 NO(g) II only mechanism of the answers + H ₂ O (1) $P_2(g)$	$k[\text{NO }][\text{F }]$ $O_2(g), has a is reaction, a is reaction, a is reaction, a is reaction, a of the oxidation of the oxi$	un observed as shown: 2 NO ₂ (g) V III only on of bromi at with this r t 2. t $k = k[H_2O_2][$ k = k[HOBr] ctivated cor	(C) ra rate law, which of y ide ions b mechanis H ₂ O-C [Br ⁻][H ⁺]	te = k [NO , rate = k [] MECH 1. 2. these mec (D) py hydroge sm? DH ⁺ + Br ⁻][H ₂ O ₂] ansition st	$\begin{array}{c} \begin{array}{c} 1 \\ 2 \end{array} \begin{bmatrix} \mathbf{F} \\ 3 \end{array} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{ANISM II.} \\ \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{O}_{2} \\ \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{O}_{2} \\ \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{O}_{2} \\ \mathbf{O}_{2} \\ \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{O}_{2} \\ \mathbf$	Fhree po First ste NO(g) - $O_2(g) -$ the mos in acid H_2O Rate = k	(D) rate ossible ep slow. → N ₂ O ₂ (→ 2 NC t likely? (E) solution [H ₂ O-O	(g)) ₂ (g) ? II and III h. Slo PH ⁺][Br ⁻]
 (A) ra 46) MECH 1. 2. MECH (A) 47) 1. 3. (A) (D) 	NO ₂ + F ₂ → N the = k $\frac{[NO_2F]^2}{[NO_3]_2^2[1]}$ The reaction, 2 mechanisms c HANISM I. Seconn NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (g) HANISM III. One I only Consider the f Which of the f H ⁺ + H ₂ O ₂ → HOBr + H ⁺ + Rate = k[H ₂ O ₂ In a chemical f Reactants → p Reactants → a	\overline{F}_{2} 2 NO(g) + (could be pro- ond step slow g) → N ₂ O ₂ ((g) → 2 NO e step reacti (B) \overline{C} collowing m rate laws in H ₂ O-OH ⁺ Br ⁻ → Br ₂ - 2][Br ⁻][H ⁺] ² 2][Br ⁻] ² [H ⁺] rxn involving products activated co	(B) rate = $O_2(g) \rightarrow 2 N$ posed for this w. g) $P_2(g)$ ion, 2 NO(g) II only mechanism of the answers + H ₂ O (1) $P_2(g)$ (1) mg the formation of the formation	$k[\text{NO }][\text{F }]$ $O_2(g), has a a is reaction, a is reaction, a of the second se$	un observed as shown: 2 NO ₂ (g) V III only on of bromi at with this r t 2. t $z = k[H_2O_2][$ z = k[HOBr] ctivated cor Produc	(C) ra rate law, which of y ide ions b mechanis H ₂ O-C [Br ⁻][H ⁺] <u>][H⁺][Br⁻</u> mplex (tra cts \rightarrow rea	te = k [NO , rate = k [] MECH 1. 2. these mec (D) py hydroge sm? DH ⁺ + Br ⁻][H ₂ O ₂] ansition st	$\begin{array}{c} \begin{array}{c} 1 \\ 2 \end{array} \begin{bmatrix} \mathbf{F} \\ 3 \end{array} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{ANISM II.} \\ \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \end{array} \\ \begin{array}{c} \mathbf{ANISM II.} \\ \mathbf{NO}(g) + 1 \\ \begin{array}{c} \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \end{array} \\ \begin{array}{c} \mathbf{Anisms is} \\ \mathbf{I} \\ \mathbf{and III} \\ \end{array} \\ \begin{array}{c} \mathbf{Anisms is} \\ \mathbf{I} \\ \mathbf{Anisms is} \\ \mathbf{Anisms is} \\ \mathbf{I} \\ \mathbf{Anisms is} \\ \mathbf{Anisms is} \\ \mathbf{I} \\ \mathbf{Anisms is} \\ \mathbf$	Fhree po First ste NO(g) - $O_2(g) -$ the mos in acid H_2O Rate = k	(D) rate ossible ep slow. → N ₂ O ₂ (→ 2 NC t likely? (E) solution [H ₂ O-O	(g)) ₂ (g) ? II and III h. Slo PH ⁺][Br ⁻]
 (A) ra 46) MECH 1. 2. MECH (A) 47) 1. 3. (A) (D) 48) (A) 	NO ₂ + F ₂ → N the = k $\frac{[NO_2F]^2}{[NO_3]_2^2[1]}$ The reaction, 2 mechanisms c HANISM I. Secon NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (HANISM III. One I only Consider the f Which of the f H ⁺ + H ₂ O ₂ → HOBr + H ⁺ + Rate = k[H ₂ O ₂ In a chemical Reactants → p	\overline{F}_{2} 2 NO(g) + (could be pro- ond step slow g) → N ₂ O ₂ ((g) → 2 NO e step reacti (B) \overline{C} collowing m rate laws in H ₂ O-OH ⁺ Br ⁻ → Br ₂ - 2][Br ⁻][H ⁺] ² 2][Br ⁻] ² [H ⁺] rxn involving products activated co	(B) rate = $O_2(g) \rightarrow 2 N$ posed for this w. g) $P_2(g)$ ion, 2 NO(g) II only mechanism of the answers + H ₂ O (1) $P_2(g)$ (1) mg the formation of the formation	$k[\text{NO }][\text{F }]$ $O_2(g), has a is reaction, a is reaction, a is reaction, a is reaction, a of the oxidation is consistent. Faster of the oxidation of an a a (B)$	un observed as shown: 2 NO ₂ (g) V III only on of bromi at with this r t 2. t $z = k[H_2O_2][$ z = k[HOBr] ctivated cor Produc	(C) ra rate law, which of y ide ions b mechanis H ₂ O-C [Br ⁻][H ⁺] <u>][H⁺][Br⁻</u> mplex (tra cts \rightarrow rea	te = k [NO , rate = k [] MECH 1. 2. these mec (D) py hydroge sm? DH ⁺ + Br ⁻][H ₂ O ₂] ansition st ctants	$\begin{array}{c} \begin{array}{c} 1 \\ 2 \end{array} \begin{bmatrix} \mathbf{F} \\ 3 \end{array} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \mathbf{ANISM II.} \\ \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \end{array} \\ \begin{array}{c} \mathbf{ANISM II.} \\ \mathbf{NO}(g) + 1 \\ \begin{array}{c} \mathbf{NO}(g) + 1 \\ \mathbf{N}_{2}\mathbf{O}_{2}(g) + 1 \\ \end{array} \\ \begin{array}{c} \mathbf{Anisms is} \\ \mathbf{I} \\ \mathbf{and III} \\ \end{array} \\ \begin{array}{c} \mathbf{Anisms is} \\ \mathbf{I} \\ \mathbf{Anisms is} \\ \mathbf{Anisms is} \\ \mathbf{I} \\ \mathbf{Anisms is} \\ \mathbf{Anisms is} \\ \mathbf{I} \\ \mathbf{Anisms is} \\ \mathbf$	Fhree po First ste NO(g) - $O_2(g) -$ the mos in acid H_2O Rate = k	(D) rate ossible ep slow. → N ₂ O ₂ (→ 2 NC t likely? (E) solution [H ₂ O-O	(g) (2(g) II and III Slo PH ⁺][Br ⁻] ys be exothern
 (A) ra 46) MECH 1. 2. MECH (A) (A) (D) 48) (A) (C) 	NO ₂ + F ₂ → N the = k $\frac{[NO_2F]^2}{[NO_3]_2^2[1]}$ The reaction, 2 mechanisms c HANISM I. Seconn NO(g) + NO(g N ₂ O ₂ (g) + O ₂ (g) HANISM III. One I only Consider the f Which of the f H ⁺ + H ₂ O ₂ → HOBr + H ⁺ + Rate = k[H ₂ O ₂ In a chemical f Reactants → p Reactants → a	\overline{F}] ₂ 2 NO(g) + (could be pro- ond step slow g) → N ₂ O ₂ ((g) → 2 NO e step reacti (B) \overline{C} collowing m rate laws in H ₂ O-OH ⁺ Br ⁻ → Br ₂ - 2][Br ⁻][H ⁺] ² 2][Br ⁻] ² [H ⁺] ² rxn involving products activated co aplex → pro-	(B) rate = $O_2(g) \rightarrow 2 N$ posed for this w. g) $P_2(g)$ ion, 2 NO(g) II only mechanism of the answers + H ₂ O (1) $P_2(g)$ (1) (2) (1) (2) (1) (2) (1) (2) (1) (2) (2) (1) (2) (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4	$k[\text{NO }][\text{F }]$ $O_2(g), has a is reaction, a is reaction, a is reaction, a is reaction, a of the oxidation is consistent. Faster of the oxidation of an a a construct of the oxidation of a b a b a b a b a b a b a b a b a b a $	un observed as shown: 2 NO ₂ (g) V III only on of bromi at with this r t 2. t $z = k[H_2O_2][$ z = k[HOBr] ctivated cor Produc	(C) ra (C) ra rate law, Which of y ide ions b mechanis H ₂ O-C [Br ⁻][H ⁺] [Br ⁻ mplex (tra cts \rightarrow rea cts \rightarrow act	te = k [NO , rate = k [] MECH 1. 2. these mec (D) y hydroge sm? DH ⁺ + Br ⁻][H ₂ O ₂] ansition st ctants ivated con	$\begin{array}{c} \begin{array}{c} 1 \\ 2 \end{array} \begin{bmatrix} \mathbf{F} \\ 3 \end{array} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \text{NO} \end{bmatrix}_{2}^{2} \begin{bmatrix} \mathbf{O}_{2} \end{bmatrix}_{2}^{2} \\ \begin{array}{c} \text{ANISM II.} \\ \text{NO}(g) + 1 \\ \text{N}_{2} \mathbf{O}_{2}(g) + 1 \\ \text{N}_{2} \mathbf{O}_{2}(g) + 1 \\ \text{N}_{2} \mathbf{O}_{2}(g) + 1 \\ \begin{array}{c} \text{Anisms is} \\ \text{I and III} \\ \end{array} \\ \begin{array}{c} \text{In peroxide} \\ \end{array} \\ \begin{array}{c} \text{Anisms is} \\ \text{I and III} \\ \end{array} \\ \begin{array}{c} \text{Anisms is} \\ \text{I and III} \\ \end{array} \\ \begin{array}{c} \text{Anisms is} \\ \text{I and III} \\ \end{array} \\ \begin{array}{c} \text{Anisms is} \\ \text{Anisms is} \\ \text{I and III} \\ \end{array} \\ \begin{array}{c} \text{Anisms is} \\ \text{Anisms is} \\ \text{I and III} \\ \end{array} \\ \begin{array}{c} \text{Anisms is} \\ \text$	Fhree po First ste NO(g) - $O_2(g) -$ the mos in acid H_2O Rate = k	(D) rate ossible ep slow. → N ₂ O ₂ (→ 2 NC t likely? (E) solution [H ₂ O-O	(g)) ₂ (g) ? II and III Slo PH ⁺][Br ⁻]

- (B) increasing the reactant concentrations
- (C) increasing the temperature
- (D) adding a catalyst

ANSWERS:

1. B 2. C 3. A 4. D 5. B 6. D 7. B 8. C 9. B 10. C 11. C	 19. A 20. E 21. D 22. D 23. D 24. A 25. D 26. B 27. C 28. E 29. A 	37. C 38. E 39. D 40. B 41. D 42. B 43. A 44. A 45. B 46. A 47. B
10. C	28. E	46. A
13. C 14. B	31. D 32. E	49. A 50. A
15. D 16. C 17. D	33. A 34. A 35. C	51. D 52. D 53. C
17. D 18. D	36. B	53. C 54. D